Solutions of stochastic differential equations obeying the law of the iterated logarithm, with applications to financial markets.
We study the fluctuations around non degenerate attractors of the empirical measure under mean field Gibbs measures. We prove that a mild change of the densities of these measures does not affect the central limit theorems. We apply this result to generalize the assumptions of [3] and [12] on the densities of the Gibbs measures to get precise Laplace estimates.
Soit la solution de l’équation différentielle stochastique suivante: , et considérons . L’objectif de cet article est d’établir le principe de grandes déviations pour la famille des lois induites par pour la norme höldérienne. Par conséquent, on montre le même résultat pour la famille des lois induites par . Enfin, on donne une application de ces résultats au filtrage non linéaire.
Considering the centered empirical distribution function Fn-F as a variable in , we derive non asymptotic upper bounds for the deviation of the -norms of Fn-F as well as central limit theorems for the empirical process indexed by the elements of generalized Sobolev balls. These results are valid for a large class of dependent sequences, including non-mixing processes and some dynamical systems.