The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.
(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We
study in this paper the extension of these notions to manifold indexed fields. We give
conditions on the (local) self-similarity index that ensure the existence of fractional
fields. Moreover, we explain how to identify the self-similar index. We describe a way of
simulating Gaussian fractional fields.
Multifractal analysis is known as a useful tool in signal analysis. However, the
methods are often used without methodological validation. In this study, we
present multidimensional models in order to validate multifractal analysis
methods.
We define multifractional Brownian fields indexed by a metric space, such as a manifold with its geodesic distance, when the distance is of negative type. This construction applies when the Brownian field indexed by the metric space exists, in particular for spheres, hyperbolic spaces and real trees.
Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.
Currently displaying 1 –
7 of
7