Displaying 61 – 80 of 222

Showing per page

Entry-exit decisions with implementation delay under uncertainty

Yong-Chao Zhang (2018)

Applications of Mathematics

We employ a natural method from the perspective of the optimal stopping theory to analyze entry-exit decisions with implementation delay of a project, and provide closed expressions for optimal entry decision times, optimal exit decision times, and the maximal expected present value of the project. The results in conventional research were obtained under the restriction that the sum of the entry cost and exit cost is nonnegative. In practice, we may meet cases when this sum is negative, so it is...

Hitting half-spaces or spheres by Ornstein-Uhlenbeck type diffusions

Tomasz Byczkowski, Jakub Chorowski, Piotr Graczyk, Jacek Małecki (2012)

Colloquium Mathematicae

The purpose of the paper is to provide a general method for computing the hitting distributions of some regular subsets D for Ornstein-Uhlenbeck type operators of the form 1/2Δ + F·∇, with F bounded and orthogonal to the boundary of D. As an important application we obtain integral representations of the Poisson kernel for a half-space and balls for hyperbolic Brownian motion and for the classical Ornstein-Uhlenbeck process. The method developed in this paper is based on stochastic calculus and...

Hitting time of a corner for a reflected diffusion in the square

F. Delarue (2008)

Annales de l'I.H.P. Probabilités et statistiques

We discuss the long time behavior of a two-dimensional reflected diffusion in the unit square and investigate more specifically the hitting time of a neighborhood of the origin. We distinguish three different regimes depending on the sign of the correlation coefficient of the diffusion matrix at the point 0. For a positive correlation coefficient, the expectation of the hitting time is uniformly bounded as the neighborhood shrinks. For a negative one, the expectation explodes in a polynomial way...

Inferring the residual waiting time for binary stationary time series

Gusztáv Morvai, Benjamin Weiss (2014)

Kybernetika

For a binary stationary time series define σ n to be the number of consecutive ones up to the first zero encountered after time n , and consider the problem of estimating the conditional distribution and conditional expectation of σ n after one has observed the first n outputs. We present a sequence of stopping times and universal estimators for these quantities which are pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal process with zero the renewal state...

Currently displaying 61 – 80 of 222