Previous Page 9

Displaying 161 – 180 of 180

Showing per page

The rate of convergence of option prices when general martingale discrete-time scheme approximates the Black-Scholes model

Yuliya Mishura (2015)

Banach Center Publications

We take the martingale central limit theorem that was established, together with the rate of convergence, by Liptser and Shiryaev, and adapt it to the multiplicative scheme of financial markets with discrete time that converge to the standard Black-Scholes model. The rate of convergence of put and call option prices is shown to be bounded by n - 1 / 8 . To improve the rate of convergence, we suppose that the increments are independent and identically distributed (but without binomial or similar restrictions...

Théorèmes limites avec poids pour les martingales vectorielles

Faouzi Chaabane, Faïza Maaouia (2010)

ESAIM: Probability and Statistics

We give limit theorems specifying weak and strong rates of convergence associated to a quadratic extension of the martingale almost-sure central limit theorem. Some typical examples are discussed to illustrate how to make use of them in statistic.

Two Inequalities for the First Moments of a Martingale, its Square Function and its Maximal Function

Adam Osękowski (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Given a Hilbert space valued martingale (Mₙ), let (M*ₙ) and (Sₙ(M)) denote its maximal function and square function, respectively. We prove that 𝔼|Mₙ| ≤ 2𝔼 Sₙ(M), n=0,1,2,..., 𝔼 M*ₙ ≤ 𝔼 |Mₙ| + 2𝔼 Sₙ(M), n=0,1,2,.... The first inequality is sharp, and it is strict in all nontrivial cases.

Weak Type Inequality for the Square Function of a Nonnegative Submartingale

Adam Osękowski (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Let f be a nonnegative submartingale and S(f) denote its square function. We show that for any λ > 0, λ ( S ( f ) λ ) π / 2 f , and the constant π/2 is the best possible. The inequality is strict provided ∥f∥₁ ≠ 0.

Currently displaying 161 – 180 of 180

Previous Page 9