Displaying 141 – 160 of 589

Showing per page

Discrete Models of Time-Fractional Diffusion in a Potential Well

Gorenflo, R., Abdel-Rehim, E. (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.By generalization of Ehrenfest’s urn model, we obtain discrete approximations to spatially one-dimensional time-fractional diffusion processes with drift towards the origin. These discrete approximations can be interpreted (a) as difference schemes for the relevant time-fractional partial differential equation, (b) as random walk models. The relevant convergence questions as well as the behaviour for time tending to infinity...

Discrete random processes with memory: Models and applications

Tomáš Kouřim, Petr Volf (2020)

Applications of Mathematics

The contribution focuses on Bernoulli-like random walks, where the past events significantly affect the walk's future development. The main concern of the paper is therefore the formulation of models describing the dependence of transition probabilities on the process history. Such an impact can be incorporated explicitly and transition probabilities modulated using a few parameters reflecting the current state of the walk as well as the information about the past path. The behavior of proposed...

Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model

Christophe Sabot, Pierre Tarrès (2015)

Journal of the European Mathematical Society

Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in 1986 [8], is a random process which takes values in the vertex set of a graph G and is more likely to cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites with more local time. We calculate,...

Ergodic behaviour of “signed voter models”

G. Maillard, T. S. Mountford (2013)

Annales de l'I.H.P. Probabilités et statistiques

We answer some questions raised by Gantert, Löwe and Steif (Ann. Inst. Henri Poincaré Probab. Stat.41(2005) 767–780) concerning “signed” voter models on locally finite graphs. These are voter model like processes with the difference that the edges are considered to be either positive or negative. If an edge between a site x and a site y is negative (respectively positive) the site y will contribute towards the flip rate of x if and only if the two current spin values are equal (respectively opposed)....

Estimates for simple random walks on fundamental groups of surfaces

Laurent Bartholdi, Serge Cantat, Tullio Ceccherini-Silberstein, Pierre de la Harpe (1997)

Colloquium Mathematicae

Numerical estimates are given for the spectral radius of simple random walks on Cayley graphs. Emphasis is on the case of the fundamental group of a closed surface, for the usual system of generators.

Currently displaying 141 – 160 of 589