Page 1

Displaying 1 – 9 of 9

Showing per page

Entropic Projections and Dominating Points

Christian Léonard (2010)

ESAIM: Probability and Statistics

Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations...

Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law

Emmanuelle Crétois (1995)

Applicationes Mathematicae

Let N i , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures Mi. Assume that the probability law of the Mi is completely unknown. Random techniques are developed (we use data from the processes N 1 ,..., N n to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).

Currently displaying 1 – 9 of 9

Page 1