Probabilistic and analytic formulas for the periodic splines interpolating with multiple nodes
Probabilistic cellular automata and random fields with i.i.d. directions
Let us consider the simplest model of one-dimensional probabilistic cellular automata (PCA). The cells are indexed by the integers, the alphabet is , and all the cells evolve synchronously. The new content of a cell is randomly chosen, independently of the others, according to a distribution depending only on the content of the cell itself and of its right neighbor. There are necessary and sufficient conditions on the four parameters of such a PCA to have a Bernoulli product invariant measure....
Probability density for a hyperbolic SPDE with time dependent coefficients
We prove the existence and smoothness of density for the solution of a hyperbolic SPDE with free term coefficients depending on time, under hypoelliptic non degeneracy conditions. The result extends those proved in Cattiaux and Mesnager, PTRF123 (2002) 453-483 to an infinite dimensional setting.
Processus gaussiens, markoviens d'ordre p, fortement markoviens d'ordre p et problème de Dirichlet stochastique
Proper moving average representations and outer functions in two variables.
Properties of local-nondeterminism of Gaussian and stable random fields and their applications
In this survey, we first review various forms of local nondeterminism and sectorial local nondeterminism of Gaussian and stable random fields. Then we give sufficient conditions for Gaussian random fields with stationary increments to be strongly locally nondeterministic (SLND). Finally, we show some applications of SLND in studying sample path properties of -Gaussian random fields. The class of random fields to which the results are applicable includes fractional Brownian motion, the Brownian...
Propriétés markoviennes de processus sur R2
Random fields and random sampling
We study the limiting distribution of the maximum value of a stationary bivariate real random field satisfying suitable weak mixing conditions. In the first part, when the double dimensions of the random samples have a geometric growing pattern, a max-semistable distribution is obtained. In the second part, considering the random field sampled at double random times, a mixture distribution is established for the limiting distribution of the maximum.
Random fields on the adele ring and Wilson's renormalization group
Random fractals generated by a local Gaussian process indexed by a class of functions
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc.28 (1974) 174–192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
Random fractals generated by a local gaussian process indexed by a class of functions
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174–192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
Random functionals on K{M_{p}} spaces
Random walk local time approximated by a brownian sheet combined with an independent brownian motion
Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency
Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on general properties of ambit fields. Moreover, it develops the concept of tempo-spatial stochastic volatility/intermittency within ambit fields. Various types of volatility modulation ranging from stochastic scaling...
Regularity and integrator properties of variation processes of two-parameter martingales with jumps
Représentation du processus d’Ornstein-Uhlenbeck à paramètres
Representations of isotropic Gaussian random fields with homogeneous increments.
Shao's theorem on the maximum of standardized random walk increments for multidimensional arrays
We generalize a theorem of Shao [Proc. Amer. Math. Soc.123 (1995) 575–582] on the almost-sure limiting behavior of the maximum of standardized random walk increments to multidimensional arrays of i.i.d. random variables. The main difficulty is the absence of an appropriate strong approximation result in the multidimensional setting. The multiscale statistic under consideration was used recently for the selection of the regularization parameter in a number of statistical algorithms as well as...
Some non-markovian Osterwalder-Schrader fields