On a model for the storage of files on a hardware: statistics at a fixed time and asymptotic regimes.
Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and , then , where C is a constant independent of f and g.
Assume ||·|| is a norm on ℝⁿ and ||·||⁎ its dual. Consider the closed ball , r > 0. Suppose φ is an Orlicz function and ψ its conjugate. We prove that for arbitrary A,B > 0 and for each Lipschitz function f on T, , where |·| is the Lebesgue measure on ℝⁿ. This is a strengthening of the Sobolev inequality obtained by M. Talagrand. We use this inequality to state, for a given concave, strictly increasing function η: ℝ₊ → ℝ with η(0) = 0, a necessary and sufficient condition on φ so that each...
Many statistical applications require establishing central limit theorems for sums/integrals or for quadratic forms , where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n (Xt,Xs), since the “Appell expansion rank" determines typically the type of central limit theorem satisfied by the functionals ST(h), QT(h). We review and extend here to multidimensional indices, along lines conjectured in [F. Avram and M.S. Taqqu,...
In this paper we consider the problem of estimating the intensity of a spatial homogeneous Poisson process if a part of the observations (quadrat counts) is censored. The actual problem has occurred during a court case when one of the authors was a referee for the defense.