Displaying 1101 – 1120 of 3391

Showing per page

Groupes aléatoires

Étienne Ghys (2002/2003)

Séminaire Bourbaki

Quelles sont les propriétés d’un groupe de présentation finie “tiré au hasard” ? La réponse à cette question dépend bien entendu de la méthode choisie pour le tirage au sort. On peut par exemple fixer n générateurs et choisir p relations aléatoirement parmi les mots de longueur L , puis faire tendre L vers l’infini. On peut aussi choisir un graphe fini, étiqueter aléatoirement ses arêtes par des générateurs, et considérer le groupe engendré par ces générateurs, soumis aux relations lues sur les cycles...

Hazard rate model and statistical analysis of a compound point process

Petr Volf (2005)

Kybernetika

A stochastic process cumulating random increments at random moments is studied. We model it as a two-dimensional random point process and study advantages of such an approach. First, a rather general model allowing for the dependence of both components mutually as well as on covariates is formulated, then the case where the increments depend on time is analyzed with the aid of the multiplicative hazard regression model. Special attention is devoted to the problem of prediction of process behaviour....

Hiding a constant drift

Vilmos Prokaj, Miklós Rásonyi, Walter Schachermayer (2011)

Annales de l'I.H.P. Probabilités et statistiques

The following question is due to Marc Yor: Let B be a brownian motion and St=t+Bt. Can we define an -predictable process H such that the resulting stochastic integral (H⋅S) is a brownian motion (without drift) in its own filtration, i.e. an -brownian motion? In this paper we show that by dropping the requirement of -predictability of H we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor’s question. The original question, i.e.,...

Currently displaying 1101 – 1120 of 3391