Displaying 1761 – 1780 of 3391

Showing per page

On m-dimensional stochastic processes in Banach spaces.

Rodolfo De Dominicis, Elvira Mascolo (1981)

Stochastica

In the present paper the authors prove a weak law of large numbers for multidimensional processes of random elements by means of the random weighting. The results obtained generalize those of Padgett and Taylor.

On measure-preserving transformations and doubly stationary symmetric stable processes

A. Gross, A. Weron (1995)

Studia Mathematica

In a 1987 paper, Cambanis, Hardin and Weron defined doubly stationary stable processes as those stable processes which have a spectral representation which is itself stationary, and they gave an example of a stationary symmetric stable process which they claimed was not doubly stationary. Here we show that their process actually had a moving average representation, and hence was doubly stationary. We also characterize doubly stationary processes in terms of measure-preserving regular set isomorphisms...

On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes

Umarov, Sabir, Gorenflo, Rudolf (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).

On Multivalued Amarts

Dorota Dudek, Wiesław Zięba (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

In recent years, convergence results for multivalued functions have been developed and used in several areas of applied mathematics: mathematical economics, optimal control, mechanics, etc. The aim of this note is to give a criterion of almost sure convergence for multivalued asymptotic martingales (amarts). For every separable Banach space B the fact that every L¹-bounded B-valued martingale converges a.s. in norm to an integrable B-valued random variable (r.v.) is equivalent to the Radon-Nikodym...

On multivalued martingales, multimeasures and multivalued Radon-Nikodym property

Mohamed Zohry (2004)

Bollettino dell'Unione Matematica Italiana

In this paper we prove a representation result for essentially bounded multivalued martingales with nonempty closed convex and bounded values in a real separable Banach space. Then we turn our attention to the interplay between multimeasures and multivalued Riesz representations. Finally, we give the multivalued Radon-Nikodym property.

On non-ergodic versions of limit theorems

Dalibor Volný (1989)

Aplikace matematiky

The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.

Currently displaying 1761 – 1780 of 3391