Trees and asymptotic expansions for fractional stochastic differential equations
In this article, we consider an n-dimensional stochastic differential equation driven by a fractional brownian motion with Hurst parameter H>1/3. We derive an expansion for E[f(Xt)] in terms of t, where X denotes the solution to the SDE and f:ℝn→ℝ is a regular function. Comparing to F. Baudoin and L. Coutin, Stochastic Process. Appl.117 (2007) 550–574, where the same problem is studied, we provide an improvement in three different directions: we are able to consider equations with drift,...