Estimates for the derivative of diffusion semigroups.
Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ x and μ(x)=μ or μ(x)=μ x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
In this note we propose an exact simulation algorithm for the solution of (1)d X t = d W t + b̅ ( X t ) d t, X 0 = x, where b̅is a smooth real function except at point 0 where b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2)d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...
Let us consider a solution of a one-dimensional stochastic differential equation driven by a standard Brownian motion with time-inhomogeneous drift coefficient . This process can be viewed as a Brownian motion evolving in a potential, possibly singular, depending on time. We prove results on the existence and uniqueness of solution, study its asymptotic behaviour and made a precise description, in terms of parameters , and , of the recurrence, transience and convergence. More precisely, asymptotic...