On a class of forward-backward stochastic differential systems in infinite dimensions.
We consider a stochastic SIR system and we prove the existence, uniqueness and positivity of solution. Moreover the existence of an invariant measure under a suitable condition on the coefficients is studied.
We introduce and investigate a new sort of stochastic differential inclusions on manifolds, given in terms of mean derivatives of a stochastic process, introduced by Nelson for the needs of the so called stochastic mechanics. This class of stochastic inclusions is ideologically the closest one to ordinary differential inclusions. For inclusions with forward mean derivatives on manifolds we prove some results on the existence of solutions.
We consider a European option pricing problem under a partial information market, i.e., only the security's price can be observed, the rate of return and the noise source in the market cannot be observed. To make the problem tractable, we focus on gap option which is a generalized form of the classical European option. By using the stochastic analysis and filtering technique, we derive a Black-Scholes formula for gap option pricing with dividends under partial information. Finally, we apply filtering...
We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum...