Weak approximation of SDEs by discrete-time processes.
Existence of a weak solution to the -dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.
If the space of quadratic forms in is splitted in a direct sum and if and are independent random variables of , assume that there exist a real number such that and real distinct numbers such that for any in We prove that this happens only when , when can be structured in a Euclidean Jordan algebra and when and have Wishart distributions corresponding to this structure.