Page 1

Displaying 1 – 19 of 19

Showing per page

Una generalización de los procesos estocásticos log-normal y de Gompertz como procesos de Itô.

Juan Gómez García, Fulgencio Buendía Moya (2001)

Qüestiió

Estudiamos una ecuación diferencial estocástica de Itô que es una generalización de los modelos estocásticos logarítmico-normal y de Gomperz. Reducimos la ecuación mediante una transformación de cambio de estado a otra que resulta una generalización de la ecuación de Langevin, que rige el proceso de Uhlenbeck-Ornstein. A partir de la expresión analítica de las soluciones de ésta y de la original estudiamos las características estadísticas de ambos procesos solución, en particular los momentos de...

Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions

D. Loukianova, O. Loukianov (2008)

Annales de l'I.H.P. Probabilités et statistiques

Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach...

Uniform exponential ergodicity of stochastic dissipative systems

Beniamin Goldys, Bohdan Maslowski (2001)

Czechoslovak Mathematical Journal

We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in d with d 3 .

Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions

Fabrice Baudoin, Cheng Ouyang, Samy Tindel (2014)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H g t ; 1 / 3 . We show that under some geometric conditions, in the regular case H g t ; 1 / 2 , the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case H g t ; 1 / 3 and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper...

Currently displaying 1 – 19 of 19

Page 1