A general stochastic maximum principle for singular control problems.
Page 1 Next
Bahlali, Seid, Mezerdi, Brahim (2005)
Electronic Journal of Probability [electronic only]
Hiroshi Kaneko, Shintaro Nakao (1988)
Séminaire de probabilités de Strasbourg
Nguyen Quy Hy, Nguyen Thi Minh (1992)
Annales Polonici Mathematici
A stochastic integral equation corresponding to a probability space is considered. This equation plays the role of a dynamical system in many problems of stochastic control with the control variable . One constructs stochastic processes , connected with a Markov chain and with the space . The expected values of (i = 1,2) are respectively the expected value of an integral representation of a solution x(t) of the equation and that of its derivative .
Minkova, Leda D. (1996)
Journal of Applied Mathematics and Stochastic Analysis
Keck, David N., McKibben, Mark A. (2005)
Journal of Applied Mathematics and Stochastic Analysis
Appleby, John A.D. (2002)
Electronic Communications in Probability [electronic only]
Mania, Mikhael, Tevzadze, Revaz (2006)
Electronic Communications in Probability [electronic only]
Ngobi, Said, Stan, Aurel (2004)
International Journal of Mathematics and Mathematical Sciences
David Nualart (1986)
Séminaire de probabilités de Strasbourg
Rajeeva L. Karandikar (1982)
Séminaire de probabilités de Strasbourg
Rachid Belfadli (2010)
Annales mathématiques Blaise Pascal
We prove, by means of Malliavin calculus, the convergence in of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters and , when and .
Van Bargen, Holger M. (2009)
Electronic Journal of Probability [electronic only]
Aman, Auguste, N'Zi, Modeste (2003)
Journal of Applied Mathematics and Stochastic Analysis
Bahlali, K., Elouaflin, A., N'zi, M. (2004)
Journal of Applied Mathematics and Stochastic Analysis
Dorogovtsev, A.Ya., Petrova, T.A. (1995)
Journal of Applied Mathematics and Stochastic Analysis
Aristide Halanay, T. Morozan, C. Tudor (1986)
Časopis pro pěstování matematiky
B. Roynette, P. Vallois, M. Yor (2009)
Annales de l'I.H.P. Probabilités et statistiques
Limiting laws, as t→∞, for brownian motion penalised by the longest length of excursions up to t, or up to the last zero before t, or again, up to the first zero after t, are shown to exist, and are characterized.
Klaus Bichteler, Jean Jacod (1983)
Séminaire de probabilités de Strasbourg
Laurent Schwartz (1984)
Séminaire de probabilités de Strasbourg
Appleby, John A.D., Devin, Siobhán, Reynolds, David W. (2008)
Journal of Applied Mathematics and Stochastic Analysis
Page 1 Next