Displaying 121 – 140 of 161

Showing per page

Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?

Laurent Miclo (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to [ 1 , 4 ] . The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity...

Representation formulae for (C₀) m-parameter operator semigroups

Mi Zhou, George A. Anastassiou (1996)

Annales Polonici Mathematici

Some general representation formulae for (C₀) m-parameter operator semigroups with rates of convergence are obtained by the probabilistic approach and multiplier enlargement method. These cover all known representation formulae for (C₀) one- and m-parameter operator semigroups as special cases. When we consider special semigroups we recover well-known convergence theorems for multivariate approximation operators.

Research problems of Jerzy Zabczyk

Szymon Peszat, Łukasz Stettner (2015)

Banach Center Publications

In the paper we present a selected variety of problems studied by Professor Jerzy Zabczyk. Important part of Prof. Zabczyk's scientific activity was devoted to his PhD students. He has promoted 9 PhD students: Tomasz Bielecki, Jarosław Sobczyk, Łukasz Stettner and Gianmario Tessitore work mostly in control and its applications to mathematical finance, whereas the research of Anna Chojnowska-Michalik, Wojciech Jachimiak, Anna Milian, Szymon Peszat and Anna Rusinek is concentrated mostly on stochastic...

Semilinear elliptic equations with measure data and quasi-regular Dirichlet forms

Tomasz Klimsiak, Andrzej Rozkosz (2016)

Colloquium Mathematicae

We are mainly concerned with equations of the form -Lu = f(x,u) + μ, where L is an operator associated with a quasi-regular possibly nonsymmetric Dirichlet form, f satisfies the monotonicity condition and mild integrability conditions, and μ is a bounded smooth measure. We prove general results on existence, uniqueness and regularity of probabilistic solutions, which are expressed in terms of solutions to backward stochastic differential equations. Applications include equations with nonsymmetric...

Some results on invariant measures in hydrodynamics

B. Ferrario (2000)

Bollettino dell'Unione Matematica Italiana

In questa nota, si presentano risultati di esistenza e di unicità di misure invarianti per l'equazione di Navier-Stokes che governa il moto di un fluido viscoso incomprimibile omogeneo in un dominio bidimensionale soggetto a una forzante che ha due componenti: una deterministica e una di tipo rumore bianco nella variabile temporale.

Static hedging of barrier options with a smile : an inverse problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of u ^ is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L , continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C 0 -approximated, but an exact solution does not...

Static Hedging of Barrier Options with a Smile: An Inverse Problem

Claude Bardos, Raphaël Douady, Andrei Fursikov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of û is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C0-approximated, but an exact solution...

Currently displaying 121 – 140 of 161