Previous Page 2

Displaying 21 – 24 of 24

Showing per page

Monotonicity and comparison results for nonnegative dynamic systems. Part I: Discrete-time case

Nico M. van Dijk, Karel Sladký (2006)

Kybernetika

In two subsequent parts, Part I and II, monotonicity and comparison results will be studied, as generalization of the pure stochastic case, for arbitrary dynamic systems governed by nonnegative matrices. Part I covers the discrete-time and Part II the continuous-time case. The research has initially been motivated by a reliability application contained in Part II. In the present Part I it is shown that monotonicity and comparison results, as known for Markov chains, do carry over rather smoothly...

Most random walks on nilpotent groups are mixing

R. Rębowski (1992)

Annales Polonici Mathematici

Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.

Currently displaying 21 – 24 of 24

Previous Page 2