Page 1

Displaying 1 – 7 of 7

Showing per page

Computational schemes for two exponential servers where the first has a finite buffer

Moshe Haviv, Rita Zlotnikov (2011)

RAIRO - Operations Research - Recherche Opérationnelle

We consider a system consisting of two not necessarily identical exponential servers having a common Poisson arrival process. Upon arrival, customers inspect the first queue and join it if it is shorter than some threshold n. Otherwise, they join the second queue. This model was dealt with, among others, by Altman et al. [Stochastic Models20 (2004) 149–172]. We first derive an explicit expression for the Laplace-Stieltjes transform of the distribution underlying the arrival (renewal) process to...

Computational schemes for two exponential servers where the first has a finite buffer

Moshe Haviv, Rita Zlotnikov (2011)

RAIRO - Operations Research

We consider a system consisting of two not necessarily identical exponential servers having a common Poisson arrival process. Upon arrival, customers inspect the first queue and join it if it is shorter than some threshold n. Otherwise, they join the second queue. This model was dealt with, among others, by Altman et al. [Stochastic Models20 (2004) 149–172]. We first derive an explicit expression for the Laplace-Stieltjes transform of the distribution underlying the arrival (renewal) process to...

Monte Carlo simulation and analytic approximation of epidemic processes on large networks

Noémi Nagy, Péter Simon (2013)

Open Mathematics

Low dimensional ODE approximations that capture the main characteristics of SIS-type epidemic propagation along a cycle graph are derived. Three different methods are shown that can accurately predict the expected number of infected nodes in the graph. The first method is based on the derivation of a master equation for the number of infected nodes. This uses the average number of SI edges for a given number of the infected nodes. The second approach is based on the observation that the epidemic...

Nonlinear Markov processes in big networks

Quan-Lin Li (2016)

Special Matrices

Big networks express multiple classes of large-scale networks in many practical areas such as computer networks, internet of things, cloud computation, manufacturing systems, transportation networks, and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and the nonlinear Markov processes to constructing a broad class of nonlinear continuous-time block-structured Markov processes, which can be used to deal with many practical stochastic systems. Firstly,...

Regularity and approximability of the solutions to the chemical master equation

Ludwig Gauckler, Harry Yserentant (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The chemical master equation is a fundamental equation in chemical kinetics. It underlies the classical reaction-rate equations and takes stochastic effects into account. In this paper we give a simple argument showing that the solutions of a large class of chemical master equations are bounded in weighted ℓ1-spaces and possess high-order moments. This class includes all equations in which no reactions between two or more already present molecules and further external reactants occur that add mass...

Currently displaying 1 – 7 of 7

Page 1