Displaying 1241 – 1260 of 1453

Showing per page

The Kendall theorem and its application to the geometric ergodicity of Markov chains

Witold Bednorz (2013)

Applicationes Mathematicae

We give an improved quantitative version of the Kendall theorem. The Kendall theorem states that under mild conditions imposed on a probability distribution on the positive integers (i.e. a probability sequence) one can prove convergence of its renewal sequence. Due to the well-known property (the first entrance last exit decomposition) such results are of interest in the stability theory of time-homogeneous Markov chains. In particular this approach may be used to measure rates of convergence of...

The M/G/1 retrial queue: an information theoretic approach.

Jesús R. Artalejo, María Jesús López Herrero (2005)

SORT

In this paper, we give a survey of the use of information theoretic techniques for the estimation of the main performance characteristics of the M/G/1 retrial queue. We focus on the limiting distribution of the system state, the length of a busy period and the waiting time. Numerical examples are given to illustrate the accuracy of the maximum entropy estimations when they are compared versus the classical solutions.

The M/M/1 queue is Bernoulli

Michael Keane, Neil O'Connell (2008)

Colloquium Mathematicae

The classical output theorem for the M/M/1 queue, due to Burke (1956), states that the departure process from a stationary M/M/1 queue, in equilibrium, has the same law as the arrivals process, that is, it is a Poisson process. We show that the associated measure-preserving transformation is metrically isomorphic to a two-sided Bernoulli shift. We also discuss some extensions of Burke's theorem where it remains an open problem to determine if, or under what conditions, the analogue of this result...

The Modified M/G/1 queue

D. G. Tambouratzis (1973)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

The MX/M/1 queue with working breakdown

Zaiming Liu, Yang Song (2014)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we consider a batch arrival MX/M/1 queue model with working breakdown. The server may be subject to a service breakdown when it is busy, rather than completely stoping service, it will decrease its service rate. For this model, we analyze a two-dimensional Markov chain and give its quasi upper triangle transition probability matrix. Under the system stability condition, we derive the probability generating function (PGF) of the stationary queue length, and then obtain its stochastic...

The ODE method for some self-interacting diffusions on ℝd

Aline Kurtzmann (2010)

Annales de l'I.H.P. Probabilités et statistiques

The aim of this paper is to study the long-term behavior of a class of self-interacting diffusion processes on ℝd. These are solutions to SDEs with a drift term depending on the actual position of the process and its normalized occupation measure μt. These processes have so far been studied on compact spaces by Benaïm, Ledoux and Raimond, using stochastic approximation methods. We extend these methods to ℝd, assuming a confinement potential satisfying some conditions. These hypotheses on the confinement...

Currently displaying 1241 – 1260 of 1453