Displaying 1321 – 1340 of 1453

Showing per page

Transience/recurrence and the speed of a one-dimensional random walk in a “have your cookie and eat it” environment

Ross G. Pinsky (2010)

Annales de l'I.H.P. Probabilités et statistiques

Consider a variant of the simple random walk on the integers, with the following transition mechanism. At each site x, the probability of jumping to the right is ω(x)∈[½, 1), until the first time the process jumps to the left from site x, from which time onward the probability of jumping to the right is ½. We investigate the transience/recurrence properties of this process in both deterministic and stationary, ergodic environments {ω(x)}x∈Z. In deterministic environments, we also study the speed...

Two mutually rarefied renewal processes

Ilona Kopocińska (1994)

Applicationes Mathematicae

Let us consider two independent renewal processes generated by appropriate sequences of life times. We say that a renewal time is accepted if in the time between a signal and the preceding one, some signal of the second process occurs. Our purpose is to analyze the sequences of accepted renewals. For simplicity we consider continuous and discrete time separately. In the first case we mainly consider the renewal process rarefied by the Poisson process, in the second we analyze the process generated...

Currently displaying 1321 – 1340 of 1453