On the smallest eigenvalue of the Stokes operator in a domain with fine-grained random boundary.
The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching...
We pursue the study of a random coloring first passage percolation model introduced by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model continuously depends on the law of the coloring. The proof uses several couplings, particularly with greedy lattice animals.
A queueing system with batch Poisson arrivals and single vacations with the exhaustive service discipline is investigated. As the main result the representation for the Laplace transform of the transient queue-size distribution in the system which is empty before the opening is obtained. The approach consists of few stages. Firstly, some results for a ``usual'' system without vacations corresponding to the original one are derived. Next, applying the formula of total probability, the analysis of...
Consider the following inhomogeneous fragmentation model: suppose an initial particle with mass x₀ ∈ (0,1) undergoes splitting into b > 1 fragments of random sizes with some size-dependent probability p(x₀). With probability 1-p(x₀), this particle is left unchanged forever. Iterate the splitting procedure on each sub-fragment if any, independently. Two cases are considered: the stable and unstable case with and respectively, for some a > 0. In the first (resp. second) case, since smaller...
Let be a pair of exchangeable lifetimes whose dependence structure is described by an Archimedean survival copula, and let denotes the corresponding pair of residual lifetimes after time , with . This note deals with stochastic comparisons between and : we provide sufficient conditions for their comparison in usual stochastic and lower orthant orders. Some of the results and examples presented here are quite unexpected, since they show that there is not a direct correspondence between univariate...