Displaying 61 – 80 of 252

Showing per page

Consistency of the least weighted squares under heteroscedasticity

Jan Ámos Víšek (2011)

Kybernetika

A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.

Consistency of trigonometric and polynomial regression estimators

Waldemar Popiński (1998)

Applicationes Mathematicae

The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials e k , k=0,1,..., for the observation model y i = f ( x i ) + η i , i=1,...,n, where the η i are independent random variables with zero mean value and finite variance, and the observation points x i [ a , b ] , i=1,...,n, form a random sample from a distribution with density ϱ L 1 [ a , b ] . Sufficient and necessary conditions are obtained for consistency in the sense of the errors f - f ^ N , | f ( x ) - N ( x ) | , x [ a , b ] ,...

Detecting abrupt changes in random fields

Antoine Chambaz (2002)

ESAIM: Probability and Statistics

This paper is devoted to the study of some asymptotic properties of a M -estimator in a framework of detection of abrupt changes in random field’s distribution. This class of problems includes e.g. recovery of sets. It involves various techniques, including M -estimation method, concentration inequalities, maximal inequalities for dependent random variables and φ -mixing. Penalization of the criterion function when the size of the true model is unknown is performed. All the results apply under mild,...

Detecting abrupt changes in random fields

Antoine Chambaz (2010)

ESAIM: Probability and Statistics

This paper is devoted to the study of some asymptotic properties of a M-estimator in a framework of detection of abrupt changes in random field's distribution. This class of problems includes e.g. recovery of sets. It involves various techniques, including M-estimation method, concentration inequalities, maximal inequalities for dependent random variables and ϕ-mixing. Penalization of the criterion function when the size of the true model is unknown is performed. All the results apply under...

Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models

S. Valère Bitseki Penda, Hacène Djellout (2014)

Annales de l'I.H.P. Probabilités et statistiques

The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general p th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

Diffusions with measurement errors. I. Local asymptotic normality

Arnaud Gloter, Jean Jacod (2001)

ESAIM: Probability and Statistics

We consider a diffusion process X which is observed at times i / n for i = 0 , 1 , ... , n , each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance ρ n . There is an unknown parameter within the diffusion coefficient, to be estimated. In this first paper the case when X is indeed a gaussian martingale is examined: we can prove that the LAN property holds under quite weak smoothness assumptions, with an explicit limiting Fisher information. What is perhaps...

Diffusions with measurement errors. I. Local Asymptotic Normality

Arnaud Gloter, Jean Jacod (2010)

ESAIM: Probability and Statistics

We consider a diffusion process X which is observed at times i/n for i = 0,1,...,n, each observation being subject to a measurement error. All errors are independent and centered Gaussian with known variance pn. There is an unknown parameter within the diffusion coefficient, to be estimated. In this first paper the case when X is indeed a Gaussian martingale is examined: we can prove that the LAN property holds under quite weak smoothness assumptions, with an explicit limiting Fisher information....

Diffusions with measurement errors. II. Optimal estimators

Arnaud Gloter, Jean Jacod (2001)

ESAIM: Probability and Statistics

We consider a diffusion process X which is observed at times i / n for i = 0 , 1 , ... , n , each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance ρ n . There is an unknown parameter to estimate within the diffusion coefficient. In this second paper we construct estimators which are asymptotically optimal when the process X is a gaussian martingale, and we conjecture that they are also optimal in the general case.

Diffusions with measurement errors. II. Optimal estimators

Arnaud Gloter, Jean Jacod (2010)

ESAIM: Probability and Statistics

We consider a diffusion process X which is observed at times i/n for i = 0,1,...,n, each observation being subject to a measurement error. All errors are independent and centered Gaussian with known variance pn. There is an unknown parameter to estimate within the diffusion coefficient. In this second paper we construct estimators which are asymptotically optimal when the process X is a Gaussian martingale, and we conjecture that they are also optimal in the general case.

Currently displaying 61 – 80 of 252