Algorithms for determining the model structure of a controlled system
Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributions. Bayes estimator of a lower-bounded scale parameter, under the squared-log error loss function with...
En este trabajo se demuestra que las soluciones clásicas a los contrastes de hipótesis paramétricos son casos particulares de la solución bayesiana a un problema de decisión con dos alternativas, en el que el incremento de utilidad por rechazar la hipótesis nula cuando es falsa es una función lineal de la discrepancia entre el modelo paramétrico aceptado y el más verosímil de los modelos compatibles con la hipótesis nula.
In the printed version of the paper Bayesian survival analysis based on the Rayleigh model (Trabajos de Estadística Vol. 5, no. 1, 1990), figures num. 1, 2 and 3 mentioned on page 91 were not printed with the paper. That may create confusion and problems for the readers in understanding the conclusions, as in the absence of figures the paper is incomplete. For this reason we publish the figures in this issue.
En este trabajo se introduce el modelo ARE(I) con indicador de nivel mínimo J.l, parámetro que generaliza el modelo ARO) con errores exponenciales y se analiza desde un punto de vista bayesiano, obteniéndose una familia de distribuciones conjugadas para el hiperparámetro que describe el modelo.
Se calculan las distribuciones menos informativas cuando se utilizan como medidas de información la entropía útil y la energía informacional de Onicescu, tanto si el espacio de estados Θ es continuo (intervalo de R) como si es discreto y suponiendo que el decisor posee información acerca de algunas características de la distribución a priori (monotonías de la función de densidad, probabilidades de subconjuntos de Θ, monotonías o cotas de la razón de fallo).
Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to...
The BIPF algorithm is a Markovian algorithm with the purpose of simulating certain probability distributions supported by contingency tables belonging to hierarchical log-linear models. The updating steps of the algorithm depend only on the required expected marginal tables over the maximal terms of the hierarchical model. Usually these tables are marginals of a positive joint table, in which case it is well known that the algorithm is a blocking Gibbs Sampler. But the algorithm makes sense even...
Given the recorded life times from a Weibull distribution, Bayes estimates of the reliability function and hazard rate are obtained using the posterior distributions and some recent results on Bayesian approximations due to Lindley (1980). Based on a Monte Carlo study, these estimates are compared with their maximum likelihood counterparts.
A homogeneous Poisson process (N(t),t ≥ 0) with the intensity function m(t)=θ is observed on the interval [0,T]. The problem consists in estimating θ with balancing the LINEX loss due to an error of estimation and the cost of sampling which depends linearly on T. The optimal T is given when the prior distribution of θ is not uniquely specified.
An upper bound for the Kolmogorov distance between the posterior distributions in terms of that between the prior distributions is given. For some likelihood functions the inequality is sharp. Applications to assessing Bayes robustness are presented.