Estimation of polynomials in the regression model
Let be an -dimensional random vector which is distributed. A minimum variance unbiased estimator is given for provided is an unbiasedly estimable functional of an unknown -dimensional parameter .
Let be an -dimensional random vector which is distributed. A minimum variance unbiased estimator is given for provided is an unbiasedly estimable functional of an unknown -dimensional parameter .
The linear regression model, where the mean value parameters are divided into stable and nonstable part in each of both epochs of measurement, is considered in this paper. Then, equivalent formulas of the best linear unbiased estimators of this parameters in both epochs using partitioned matrix inverse are derived.
The aim of the paper is estimation of the generalized variance of a bivariate normal distribution in the case of a sample with missing observations. The estimator based on all available observations is compared with the estimator based only on complete pairs of observations.
We consider a failure hazard function, conditional on a time-independent covariate Z, given by . The baseline hazard function and the relative risk both belong to parametric families with . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...
The minimum variance linear unbiased estimators (MVLUE), the best linear invariant estimators (BLIE) and the maximum likelihood estimators (MLE) based on m selected kth record values are presented for the parameters of the Gumbel and Burr distributions.
In the mixture k ≥ 2 of logarithmic-normal distributions, with density function (1), the parameters μ1, ..., μk satisfying conditions (2) and the parameters p1, ..., pk satisfying conditions (3) are unknown. Using moments of orders r = -k, -k+1, ..., 0, 1, ..., k-1 we get a system of 2k equations (8), an equivalent of matrix equation (10). The equation (13) has exactly one solution with regard to A. If in the equation (13) we substitute the unbiased and consistent estimators D'r for the coefficients...
The problem considered is that of estimation of the size (N) of a closed population under three sampling schemes admitting unbiased estimation of N. It is proved that for each of these schemes, the uniformly minimum variance unbiased estimator (UMVUE) of N is inadmissible under square error loss function. For the first scheme, the UMVUE is also the maximum likelihood estimator (MLE) of N. For the second scheme and a special case of the third, it is shown respectively that an MLE and an estimator...
An estimator of the standard deviation of the first derivative of a stationary Gaussian process with known variance and two continuous derivatives, based on the values of the relative maxima and minima, is proposed, and some of its properties are considered.
The MINQUE of the linear function of the unknown variance-components parameter in mixed linear model under linear restrictions of the type is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions , where , is given.