Page 1 Next

Displaying 1 – 20 of 23

Showing per page

Un teorema de convergencia con aplicación a la inferencia bayesiana.

Eusebio Gómez Sánchez-Manzano (1986)

Trabajos de Estadística

A theorem is proved showing that, assuming some boundary conditions, the following hypotheses:1. {Xn} is a sequence of continuous random variables which approaches in probability to a numerical sequence {an},2. {Yn} is another sequence of random variables such that, for all n, the density function of Yn is proportional to the product of the density of Xn by another density not depending on n,lead to the fact that the random sequence {Yn} also approaches in probability to {an}.We also show some related...

Una alternativa bayesiana a los contrastes de la bondad del ajuste.

F.Javier Girón, César Rodríguez Ortiz (1985)

Trabajos de Estadística e Investigación Operativa

Se considera el problema de hacer inferencias acerca del modelo beta simétrico, desde un punto de vista bayesiano. Los resultados se aplican posteriormente al contraste de la bondad de ajuste en el caso de una hipótesis nula simple (sin parámetros marginales) y en el caso de que la hipótesis nula conste de un número finito de modelos. Caso de que el test se acepte, se dan expresiones para las probabilidades a posteriori de los diferentes modelos. En el caso de que se rechace la hipótesis nula el...

Una definición de robustez cualitativa en inferencia bayesiana.

Antonio Cuevas González (1984)

Trabajos de Estadística e Investigación Operativa

Proponemos una definición de "estabilidad" para un modelo bayesiano, respecto a cambios en la distribución básica (la distribución a priori se mantiene fija). Esta definición se discute e interpreta mediante el concepto de continuidad.Se obtienen también condiciones suficientes para la estabilidad así definida y se proponen algunos ejemplos.Finalmente se sugiere una generalización, con la distribución a priori también variable, y se obtiene un teorema para esta nueva situación.

Una familia de distribuciones conjugadas para un proceso ARE (1).

Enrique Caro, Juan Ignacio Domínguez, Francisco Javier Girón (1991)

Trabajos de Estadística

En este artículo se estudia, desde una perspectiva bayesiana, un proceso AR(1) con errores exponenciales, ARE(1): para ello se construye una nueva familia de distribuciones conjugadas, denotada por CDG, que permite construir una especie de filtro de Kalman para la estimación recursiva de los parámetros del modelo.

Una solución bayesiana a la paradoja de Stein.

Juan R. Ferrándiz (1982)

Trabajos de Estadística e Investigación Operativa

Stein (1959), en su artículo sobre la gran discrepancia entre intervalos de confianza e intervalos fiduciales, puso de relieve el comportamiento poco convincente de la distribución inicial uniforme para el vector de medias de una normal mutivariante si nuestro interés se centra en hacer inferencias sobre el cuadrado de su norma.En este artículo, utilizando el método de la maximización de la información desconocida (Bernardo, 1979), se estudia en qué sentido la distribución inicial del vector de...

Unbiased estimation for two-parameter exponential distribution under time censored sampling

S. Sengupta (2009)

Applicationes Mathematicae

The problem considered is that of unbiased estimation for a two-parameter exponential distribution under time censored sampling. We obtain a necessary form of an unbiasedly estimable parametric function and prove that there does not exist any unbiased estimator of the parameters and the mean of the distribution. For reliability estimation at a specified time point, we give a necessary and sufficient condition for the existence of an unbiased estimator and suggest an unbiased estimator based on a...

Unbiased estimation of reliability for two-parameter exponential distribution under time censored sampling

S. Sengupta (2010)

Applicationes Mathematicae

The problem considered is that of unbiased estimation of reliability for a two-parameter exponential distribution under time censored sampling. We give necessary and sufficient conditions for the existence of uniformly minimum variance unbiased estimator and also provide a characterization of a complete class of unbiased estimators in situations where unbiased estimators exist.

Unbiased estimators of multivariate discrete distributions and chi-square goodness-of-fit test.

Mikhail S. Nikulin, Vassiliy G. Voinov (1993)

Qüestiió

We consider the problem of estimation of the value of a real-valued function u(θ), θ = (θ1, ..., θk)T, on the basis of a sample from non-truncated or truncated multivariate Modified Power Series Distributions. Using the general theory of estimation and the results of Patil (1965) and Patel (1978) we give the tables of MVUE's for functions of parameter θ of trinomial, multinomial, negative-multinomial and left-truncated modified power series distributions. We have applied the properties of MVUE's...

Uncertainty of coordinates and looking for dispersion of GPS receiver

Pavel Tuček, Jaroslav Marek (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The aim of the paper is to show some possible statistical solution of the estimation of the dispersion of the GPS receiver. The presented method (based on theory of linear model with additional constraints of type I) can serve for an improvement of the accuracy of estimators of coordinates acquired from the GPS receiver.

Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem

Marta D’Elia, Alessandro Veneziani (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The reliable and effective assimilation of measurements and numerical simulations in engineering applications involving computational fluid dynamics is an emerging problem as soon as new devices provide more data. In this paper we are mainly driven by hemodynamics applications, a field where the progressive increment of measures and numerical tools makes this problem particularly up-to-date. We adopt a Bayesian approach to the inclusion of noisy data in the incompressible steady Navier-Stokes equations...

Underparametrization of weakly nonlinear regression models

Lubomír Kubáček, Eva Tesaříková (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A large number of parameters in regression models can be serious obstacle for processing and interpretation of experimental data. One way how to overcome it is an elimination of some parameters. In some cases it need not deteriorate statistical properties of estimators of useful parameters and can help to interpret them. The problem is to find conditions which enable us to decide whether such favourable situation occurs.

Unimodal contaminations in testing point null hypothesis.

Miguel Angel Gómez-Villegas, Luís Sanz (2003)

RACSAM

The problem of testing a point null hypothesis from the Bayesian perspective is considered. The uncertainties are modelled through use of ε?contamination class with the class of contaminations including: i) All unimodal distributions and ii) All unimodal and symmetric distributions. Over these classes, the infimum of the posterior probability of the point null hypothesis is computed and compared with the p?value and a better approach than the one known is obtained.

Currently displaying 1 – 20 of 23

Page 1 Next