-penalization in functional linear regression with subgaussian design
We study functional regression with random subgaussian design and real-valued response. The focus is on the problems in which the regression function can be well approximated by a functional linear model with the slope function being “sparse” in the sense that it can be represented as a sum of a small number of well separated “spikes”. This can be viewed as an extension of now classical sparse estimation problems to the case of infinite dictionaries. We study an estimator of the regression function...