Efficacités comparées de certaines méthodes de prédiction pour un ARMA perturbé
Minimax bounds for the risk function of estimators of functionals of the spectral density of Gaussian fields are obtained. This result is a generalization of a previous result of Khas'minskii and Ibragimov on Gaussian processes. Efficient estimators are then constructed for these functionals. In the case of linear functionals these estimators are given for all dimensions. For non-linear integral functionals, these estimators are constructed for the two and three dimensional problems.
The paper considers the problem of robust estimating a periodic function in a continuous time regression model with the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such a noise is a non-Gaussian Ornstein–Uhlenbeck process with jumps (see (J. R. Stat. Soc. Ser. B Stat. Methodol.63 (2001) 167–241), (Ann. Appl. Probab.18 (2008) 879–908)). An adaptive model selection procedure, based on the weighted least square estimates, is...
The Nelson-Aalen estimator is widely used in biostatistics as a non-parametric estimator of the cumulative hazard function based on a right censored sample. A number of alternative estimators can be mentioned, namely, the naive local constant estimator (Guillén, Nielsen and Pérez-Marín, 2007) which provides improved bias versus variance properties compared to the traditional Nelson-Aalen estimator. Nevertheless, an empirical comparison of these two estimators has never been carried out. In this...
The index of regularity of a measure was introduced by Beirlant, Berlinet and Biau [1] to solve practical problems in nearest neighbour density estimation such as removing bias or selecting the number of neighbours. These authors proved the weak consistency of an estimator based on the nearest neighbour density estimator. In this paper, we study an empirical version of the regularity index and give sufficient conditions for its weak and strong convergence without assuming absolute continuity or...
This paper studies quantile linear regression models with response data missing at random. A quantile empirical-likelihood-based method is proposed firstly to study a quantile linear regression model with response data missing at random. It follows that a class of quantile empirical log-likelihood ratios including quantile empirical likelihood ratio with complete-case data, weighted quantile empirical likelihood ratio and imputed quantile empirical likelihood ratio are defined for the regression...
Se plantea el problema de estimar una función de fiabilidad en el contexto bayesiano no paramétrico, pero utilizando técnicas paramétricas de estimación en procesos estocásticos. Se define el proceso gamma extendido, cuyas trayectorias son tasas de azar crecientes cuando se eligen convenientemente los parámetros del proceso. Se obtienen estimadores basados en este proceso, se estudian sus propiedades asintóticas bayesianas, y se termina con un ejemplo de aplicación mediante simulación.
Sea X una variable aleatoria con función de distribución F(x) y función de densidad f(x) y X1, X2,..., Xn un conjunto de observaciones de la variable que pueden ser dependientes. Se definen dos estimadores no paramétricos generales (uno recursivo y el otro no recursivo) de la función de distribución.Bajo condiciones aceptables se obtiene el sesgo y la varianza y covarianza asintótica de los estimadores definidos. Finalmente se prueban propiedades de consistencia y normalidad asintótica.
The problem of nonparametric estimation of a survival function based on a partially censored on the right sample is established in a Bayesian context, using parametric Bayesian techniques. Estimates are obtained considering neutral to the right processes, they are particularized to some of them, and their asymptotic properties are studied from a Bayesian point of view. Finally, an application to a Dirichlet process is simulated.
Consistent estimators of the asymptotic covariance matrix of vectors of -statistics are used in constructing asymptotic confidence regions for vectors of Kendall’s correlation coefficients corresponding to various pairs of components of a random vector. The regions are products of intervals computed by means of a critical value from multivariate normal distribution. The regularity of the asymptotic covariance matrix of the vector of Kendall’s sample coefficients is proved in the case of sampling...
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
Our aim is to estimate the joint distribution of a finite sequence of independent categorical variables. We consider the collection of partitions into dyadic intervals and the associated histograms, and we select from the data the best histogram by minimizing a penalized least-squares criterion. The choice of the collection of partitions is inspired from approximation results due to DeVore and Yu. Our estimator satisfies a nonasymptotic oracle-type inequality and adaptivity properties in the minimax...
We consider the problem of estimating a function on for large values of by looking for some best approximation of by composite functions of the form . Our solution is based on model selection and leads to a very general approach to solve this problem with respect to many different types of functions and statistical frameworks. In particular, we handle the problems of approximating by additive functions, single and multiple index models, artificial neural networks, mixtures of Gaussian...
Though widely accepted, in nonparametric models admitting asymmetric distributions the sample median, if n=2k, may be a poor estimator of the population median. Shortcomings of estimators which are not equivariant are presented.
Sometimes, e.g. in the context of estimating VaR (Value at Risk), underestimating a quantile is less desirable than overestimating it, which suggests measuring the error of estimation by an asymmetric loss function. As a loss function when estimating a parameter θ by an estimator T we take the well known Linex function exp{α(T-θ)} - α(T-θ) - 1. To estimate the quantile of order q ∈ (0,1) of a normal distribution N(μ,σ), we construct an optimal estimator in the class of all estimators of the form...
One of the basic estimation problems for continuous time stationary processes , is that of estimating based on the observation of the single block when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.