Page 1

Displaying 1 – 14 of 14

Showing per page

Random thresholds for linear model selection

Marc Lavielle, Carenne Ludeña (2008)

ESAIM: Probability and Statistics

A method is introduced to select the significant or non null mean terms among a collection of independent random variables. As an application we consider the problem of recovering the significant coefficients in non ordered model selection. The method is based on a convenient random centering of the partial sums of the ordered observations. Based on L-statistics methods we show consistency of the proposed estimator. An extension to unknown parametric distributions is considered. Simulated examples...

Rank tests of symmetry and R-estimation of location parameter under measurement errors

Radim Navrátil (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper deals with the hypotheses of symmetry of distributions with respect to a location parameter when the response variables are subject to measurement errors. Rank tests of hypotheses about the location parameter and the related R-estimators are studied in an asymptotic set up. It is shown, when and under what conditions, these rank tests and R-estimators can be used effectively, and the effect of measurement errors on the power of the test and on the efficiency of the R-estimators is indicated....

Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study

A. K. Md. Ehsanes Saleh, Radim Navrátil (2018)

Kybernetika

In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type...

Recursive estimates of quantile based on 0-1 observations

Pavel Charamza (1992)

Applications of Mathematics

The objective of this paper is to introduce some recursive methods that can be used for estimating an L D - 50 value. These methods can be used more generally for the estimation of the γ -quantile of an unknown distribution provided we have 0-1 observations at our disposal. Standard methods based on the Robbins-Monro procedure are introduced together with different approaches of Wu or Mukerjee. Several examples are also mentioned in order to demonstrate the usefulness of the methods presented.

Remarks on optimum kernels and optimum boundary kernels

Jitka Poměnková (2008)

Applications of Mathematics

Kernel smoothers belong to the most popular nonparametric functional estimates used for describing data structure. They can be applied to the fix design regression model as well as to the random design regression model. The main idea of this paper is to present a construction of the optimum kernel and optimum boundary kernel by means of the Gegenbauer and Legendre polynomials.

Risk bounds for mixture density estimation

Alexander Rakhlin, Dmitry Panchenko, Sayan Mukherjee (2005)

ESAIM: Probability and Statistics

In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Estimator (MLE) and the greedy procedure described by Li and Barron (1999) under the additional assumption of boundedness of densities. We prove an O ( 1 n ) bound on the estimation error which does not depend on the number of densities in the estimated combination. Under the boundedness assumption, this improves the bound of Li and Barron by...

Risk bounds for mixture density estimation

Alexander Rakhlin, Dmitry Panchenko, Sayan Mukherjee (2010)

ESAIM: Probability and Statistics

In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Estimator (MLE) and the greedy procedure described by Li and Barron (1999) under the additional assumption of boundedness of densities. We prove an O ( 1 n ) bound on the estimation error which does not depend on the number of densities in the estimated combination. Under the boundedness assumption, this improves the bound of Li and Barron...

Risk hull method for spectral regularization in linear statistical inverse problems

Clément Marteau (2010)

ESAIM: Probability and Statistics

We consider in this paper the statistical linear inverse problem Y = Af + ϵξ where A denotes a compact operator, ϵ a noise level and ξ a stochastic noise. The unknown function f has to be recovered from the indirect measurement Y. We are interested in the following approach: given a family of estimators, we want to select the best possible one. In this context, the unbiased risk estimation (URE) method is rather popular. Nevertheless, it is also very unstable. Recently, Cavalier and Golubev (2006)...

Robust estimation based on spacings in weighted exponential models

Paweł Błażej, Jarosław Bartoszewicz (2007)

Applicationes Mathematicae

Using Zieliński's (1977, 1983) formalization of robustness Błażej (2007) obtained uniformly most bias-robust estimates (UMBREs) of the scale parameter for some statistical models (including the exponential model), in a class of linear functions of order statistics, when violations of the models are generated by weight functions. In this paper the UMBRE of the scale parameter, based on spacings, in two weighted exponential models is derived. Extensions of results of Bartoszewicz (1986, 1987) are...

Currently displaying 1 – 14 of 14

Page 1