-contiguity in nonparametric testing problems
We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one first has to construct a graph on the data points and then apply a graph clustering algorithm to find a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) influences the outcome of the final clustering result. To this end we study the convergence of cluster quality measures...
The asymptotic behavior of global errors of functional estimates plays a key role in hypothesis testing and confidence interval building. Whereas for pointwise errors asymptotic normality often easily follows from standard Central Limit Theorems, global errors asymptotics involve some additional techniques such as strong approximation, martingale theory and Poissonization. We review these techniques in the framework of density estimation from independent identically distributed random variables,...