Uniform convergence of density estimators on spheres
We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.
In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of estimates based...
In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of estimates based...
We consider a fixed-design regression model with long-range dependent errors which form a moving average or Gaussian process. We introduce an artificial randomization of grid points at which observations are taken in order to diminish the impact of strong dependence. We estimate the variance of the errors using the Rice estimator. The estimator is shown to exhibit weak (i.e. in probability) consistency. Simulation results confirm this property for moderate and large sample sizes when randomization...