Displaying 101 – 120 of 147

Showing per page

On generalized conditional cumulative past inaccuracy measure

Amit Ghosh, Chanchal Kundu (2018)

Applications of Mathematics

The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI...

On independence in some families of multivariate distributions.

José Juan Quesada (1986)

Stochastica

In this paper we will prove a characterization for the independence of random vectors with positive (negative) orthant dependence according to a direction. The result can be seen as a generalization of a result by Lehmann [4].

On monotone dependence functions of the quantile type

Andrzej Krajka, Dominik Szynal (1995)

Applicationes Mathematicae

We introduce the concept of monotone dependence function of bivariate distributions without moment conditions. Our concept gives, among other things, a characterization of independent and positively (negatively) quadrant dependent random variables.

On quasi-homogeneous copulas

Gaspar Mayor, Radko Mesiar, Joan Torrens (2008)

Kybernetika

Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas are characterized by the convexity and strict monotonicity of their diagonal sections. As a by-product, a new construction method for copulas when only their diagonal section is known is given.

On the connection between cherry-tree copulas and truncated R-vine copulas

Edith Kovács, Tamás Szántai (2017)

Kybernetika

Vine copulas are a flexible way for modeling dependences using only pair-copulas as building blocks. However if the number of variables grows the problem gets fastly intractable. For dealing with this problem Brechmann at al. proposed the truncated R-vine copulas. The truncated R-vine copula has the very useful property that it can be constructed by using only pair-copulas and a lower number of conditional pair-copulas. In our earlier papers we introduced the concept of cherry-tree copulas. In this...

On the Jensen-Shannon divergence and the variation distance for categorical probability distributions

Jukka Corander, Ulpu Remes, Timo Koski (2021)

Kybernetika

We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence...

On uniform tail expansions of bivariate copulas

Piotr Jaworski (2004)

Applicationes Mathematicae

The theory of copulas provides a useful tool for modelling dependence in risk management. The goal of this paper is to describe the tail behaviour of bivariate copulas and its role in modelling extreme events. We say that a bivariate copula has a uniform lower tail expansion if near the origin it can be approximated by a homogeneous function L(u,v) of degree 1; and it is said to have a uniform upper tail expansion if the associated survival copula has a lower tail expansion. In this paper we (1)...

On uniform tail expansions of multivariate copulas and wide convergence of measures

Piotr Jaworski (2006)

Applicationes Mathematicae

The theory of copulas provides a useful tool for modeling dependence in risk management. In insurance and finance, as well as in other applications, dependence of extreme events is particularly important, hence there is a need for a detailed study of the tail behaviour of multivariate copulas. We investigate the class of copulas having regular tails with a uniform expansion. We present several equivalent characterizations of uniform tail expansions. Next, basing on them, we determine the class of...

On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas

Franco Pellerey (2008)

Kybernetika

Let 𝐗 = ( X , Y ) be a pair of exchangeable lifetimes whose dependence structure is described by an Archimedean survival copula, and let 𝐗 t = [ ( X - t , Y - t ) | X > t , Y > t ] denotes the corresponding pair of residual lifetimes after time t , with t 0 . This note deals with stochastic comparisons between 𝐗 and 𝐗 t : we provide sufficient conditions for their comparison in usual stochastic and lower orthant orders. Some of the results and examples presented here are quite unexpected, since they show that there is not a direct correspondence between univariate...

Orbital semilinear copulas

Tarad Jwaid, Bernard de Baets, Hans de Meyer (2009)

Kybernetika

We introduce four families of semilinear copulas (i.e. copulas that are linear in at least one coordinate of any point of the unit square) of which the diagonal and opposite diagonal sections are given functions. For each of these families, we provide necessary and sufficient conditions under which given diagonal and opposite diagonal functions can be the diagonal and opposite diagonal sections of a semilinear copula belonging to that family. We focus particular attention on the family of orbital...

Properties of the induced semigroup of an Archimedean copula

Włodzimierz Wysocki (2004)

Applicationes Mathematicae

It is shown that to every Archimedean copula H there corresponds a one-parameter semigroup of transformations of the interval [0,1]. If the elements of the semigroup are diffeomorphisms, then it determines a special function v H called the vector generator. Its knowledge permits finding a pseudoinverse y = h(x) of the additive generator of the Archimedean copula H by solving the differential equation d y / d x = v H ( y ) / x with initial condition ( d h / d x ) ( 0 ) = - 1 . Weak convergence of Archimedean copulas is characterized in terms of vector...

Quasi-concave copulas, asymmetry and transformations

Elisabetta Alvoni, Pier Luigi Papini (2007)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider a class of copulas, called quasi-concave; we compare them with other classes of copulas and we study conditions implying symmetry for them. Recently, a measure of asymmetry for copulas has been introduced and the maximum degree of asymmetry for them in this sense has been computed: see Nelsen R.B., Extremes of nonexchangeability, Statist. Papers 48 (2007), 329–336; Klement E.P., Mesiar R., How non-symmetric can a copula be?, Comment. Math. Univ. Carolin. 47 (2006), 141–148....

Quasi-copulas with quadratic sections in one variable

José Antonio Rodríguez–Lallena, Manuel Úbeda-Flores (2008)

Kybernetika

We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.

Currently displaying 101 – 120 of 147