Plans d'expérience adaptés à un champ d'hypothèses a priori. Construction. Précision globale
Bayesian posterior odds ratios for frequently encountered hypotheses about parameters of the normal linear multiple regression model are derived and discussed. For the particular prior distributions utilized, it is found that the posterior odds ratios can be well approximated by functions that are monotonic in usual sampling theory F statistics. Some implications of these finding and the relation of our work to the pioneering work of Jeffreys and others are considered. Tabulations of odd ratios...
We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
The properly recorded standard deviation of the estimator and the properly recorded estimate are introduced. Bounds for the locally best linear unbiased estimator and estimate and also confidence regions for a linearly unbiasedly estimable linear functional of unknown parameters of the mean value are obtained in a special structure of nonlinear regression model. A sufficient condition for obtaining the properly recorded estimate in this model is also given.
A method is introduced to select the significant or non null mean terms among a collection of independent random variables. As an application we consider the problem of recovering the significant coefficients in non ordered model selection. The method is based on a convenient random centering of the partial sums of the ordered observations. Based on L-statistics methods we show consistency of the proposed estimator. An extension to unknown parametric distributions is considered. Simulated examples...
In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a...
In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type...