Consistency and Asymptotic Normality of Maximum Likelihood Estimation for Gaussian Markov Processes from Discrete Obersvations.
We establish posterior consistency for non-parametric Bayesian estimation of the dispersion coefficient of a time-inhomogeneous Brownian motion.
We consider a diffusion process which is observed at times for , each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance . There is an unknown parameter within the diffusion coefficient, to be estimated. In this first paper the case when is indeed a gaussian martingale is examined: we can prove that the LAN property holds under quite weak smoothness assumptions, with an explicit limiting Fisher information. What is perhaps...
We consider a diffusion process X which is observed at times i/n for i = 0,1,...,n, each observation being subject to a measurement error. All errors are independent and centered Gaussian with known variance pn. There is an unknown parameter within the diffusion coefficient, to be estimated. In this first paper the case when X is indeed a Gaussian martingale is examined: we can prove that the LAN property holds under quite weak smoothness assumptions, with an explicit limiting Fisher information....
We consider a diffusion process which is observed at times for , each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance . There is an unknown parameter to estimate within the diffusion coefficient. In this second paper we construct estimators which are asymptotically optimal when the process is a gaussian martingale, and we conjecture that they are also optimal in the general case.
We consider a diffusion process X which is observed at times i/n for i = 0,1,...,n, each observation being subject to a measurement error. All errors are independent and centered Gaussian with known variance pn. There is an unknown parameter to estimate within the diffusion coefficient. In this second paper we construct estimators which are asymptotically optimal when the process X is a Gaussian martingale, and we conjecture that they are also optimal in the general case.
Let (Xt) be a diffusion on the interval (l,r) and Δn a sequence of positive numbers tending to zero. We define Ji as the integral between iΔn and (i + 1)Δn of Xs. We give an approximation of the law of (J0,...,Jn-1) by means of a Euler scheme expansion for the process (Ji). In some special cases, an approximation by an explicit Gaussian ARMA(1,1) process is obtained. When Δn = n-1 we deduce from this expansion estimators of the diffusion coefficient of X based on (Ji). These estimators are shown...
Se dan estimaciones puntuales y por intervalo para la edad y el número inicial de individuos en procesos de nacimiento puro de intensidad conocida y en procesos de Galton-Watson con distribución de descencientes conocida.
Se proponen estimadores no paramétricos de la edad y de la probabilidad de extinción de un proceso de ramificación de Galton-Watson. Dichos estimadores son comparados por simulación de Monte-Carlo, con otros estimadores propuestos por Stigler (1970) y Grump and Howe (1972).
The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of the...
The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of...
Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ x and μ(x)=μ or μ(x)=μ x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...