On the Power of Nonparametric Changepoint-Tests.
This work deals with a general problem of testing multiple hypotheses about the distribution of a discrete-time stochastic process. Both the Bayesian and the conditional settings are considered. The structure of optimal sequential tests is characterized.
The paper concentrates on modeling the data that can be described by a homogeneous or non-homogeneous Poisson process. The goal is to decide whether the intensity of the process is constant or not. In technical practice, e.g., it means to decide whether the reliability of the system remains the same or if it is improving or deteriorating. We assume two situations. First, when only the counts of events are known and, second, when the times between the events are available. Several statistical tests...
This paper considers the problem of testing a sub-hypothesis in homoscedastic linear regression models when the covariate and error processes form independent long memory moving averages. The asymptotic null distribution of the likelihood ratio type test based on Whittle quadratic forms is shown to be a chi-square distribution. Additionally, the estimators of the slope parameters obtained by minimizing the Whittle dispersion is seen to be -consistent for all values of the long memory parameters...
Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.