The solution of parabolic models by finite element space and -stable time discrezation
Linearized Gauss-Newton iteration method is used to determine main axes of the three-dimensional ellipsoid approximating a peach. Three independent photos displaying the peach as ground, side, and front view are used as data sources. System MAPLE 11 was used as a computer environment. A practical example is presented in order to demonstrate the usage of all required commands. The quality of approximation is evaluated as a final part of the paper.
We present a method for solving the equations of neutron transport with discretized energetic dependence and angular dependence approximated by the diffusion theory. We are interested in the stationary solution that characterizes neutron fluxes within the nuclear reactor core in an equilibrium state. We work with the VVER-1000 type core with hexagonal fuel assembly lattice and use a nodal method for numerical solution. The method effectively combines a whole-core coarse mesh calculation with a more...
Our aim is to classify and compute zeros of the quadratic two sided matrix polynomials, i.e. quadratic polynomials whose matrix coefficients are located at both sides of the powers of the matrix variable. We suppose that there are no multiple terms of the same degree in the polynomial , i.e., the terms have the form , where all quantities are square matrices of the same size. Both for classification and computation, the essential tool is the description of the polynomial by a matrix equation...