Displaying 21 – 40 of 84

Showing per page

An intoduction to formal orthogonality and some of its applications.

Claude Brezinski (2002)

RACSAM

This paper is an introduction to formal orthogonal polynomials and their application to Padé approximation, Krylov subspace methods for the solution of systems of linear equations, and convergence acceleration methods. Some more general formal orthogonal polynomials, and the concept of biorthogonality and its applications are also discussed.

Bayesian MCMC estimation of the rose of directions

Michaela Prokešová (2003)

Kybernetika

The paper concerns estimation of the rose of directions of a stationary fibre process in R 3 from the intersection counts of the process with test planes. A new approach is suggested based on Bayesian statistical techniques. The method is derived from the special case of a Poisson line process however the estimator is shown to be consistent generally. Markov chain Monte Carlo (MCMC) algorithms are used for the approximation of the posterior distribution. Uniform ergodicity of the algorithms used is...

Convergence acceleration by the E + p -algorithm

A. Fdil (1998)

Applicationes Mathematicae

A new algorithm which generalizes the E-algorithm is presented. It is called the E + p -algorithm. Some results on convergence acceleration for the E + p -algorithm are proved. Some applications are given.

Convergence conditions for Secant-type methods

Ioannis K. Argyros, Said Hilout (2010)

Czechoslovak Mathematical Journal

We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions...

Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations

Shu Hua Zhang, Tao Lin, Yan Ping Lin, Ming Rao (2000)

Applications of Mathematics

We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be...

Currently displaying 21 – 40 of 84