Page 1

Displaying 1 – 7 of 7

Showing per page

Nonlinear state prediction by separation approach for continuous-discrete stochastic systems

Jaroslav Švácha, Miroslav Šimandl (2008)

Kybernetika

The paper deals with a filter design for nonlinear continuous stochastic systems with discrete-time measurements. The general recursive solution is given by the Fokker–Planck equation (FPE) and by the Bayesian rule. The stress is laid on the computation of the predictive conditional probability density function from the FPE. The solution of the FPE and its integration into the estimation algorithm is the cornerstone for the whole recursive computation. A new usable numerical scheme for the FPE is...

Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations***

Shige Peng, Mingyu Xu (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.

Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations***

Shige Peng, Mingyu Xu (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.

Numerical analysis of parallel replica dynamics

Gideon Simpson, Mitchell Luskin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Parallel replica dynamics is a method for accelerating the computation of processes characterized by a sequence of infrequent events. In this work, the processes are governed by the overdamped Langevin equation. Such processes spend much of their time about the minima of the underlying potential, occasionally transitioning into different basins of attraction. The essential idea of parallel replica dynamics is that the exit distribution from a given well for a single process can be approximated by...

Numerical schemes for multivalued backward stochastic differential systems

Lucian Maticiuc, Eduard Rotenstein (2012)

Open Mathematics

We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality: d Y t + F ( t , X t , Y t , Z t ) d t φ ( Y t ) d t + Z t d W t , where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational...

Currently displaying 1 – 7 of 7

Page 1