The search session has expired. Please query the service again.
The goal of this contribution is to introduce some approaches to uncertainty modeling in a way accessible to non-specialists. Elements of the Monte Carlo method, polynomial chaos method,
Dempster-Shafer approach, fuzzy set theory, and the worst (case) scenario
method are presented.
This paper discusses analytical and numerical issues related to
elliptic equations with random coefficients which are generally
nonlinear functions of white noise. Singularity issues are avoided
by using the Itô-Skorohod calculus to interpret the interactions
between the coefficients and the solution. The solution is constructed
by means of the Wiener Chaos (Cameron-Martin) expansions. The
existence and uniqueness of the solutions are established under
rather weak assumptions, the main of which...
We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also...
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations
in the particular case of diffusion coefficient functions of the form
|x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a
symmetrized version of the Euler scheme. This symmetrized version is
easy to simulate on a computer.
We prove its strong convergence and obtain the same rate of
convergence as when the coefficients are Lipschitz.
This paper is concerned with the problem of simulation of , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain : namely, we consider the case where the boundary is killing, or where it is instantaneously reflecting in an oblique direction. Given discretization times equally spaced on the interval , we propose new discretization schemes: they are fully implementable and provide a weak error of order under some conditions. The construction...
This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the
solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain
D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously
reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T],
we propose new discretization schemes: they are fully implementable and provide a weak error of order
N-1 under some conditions....
We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.
In this note we propose an exact simulation algorithm for the solution of (1)d X t = d W t + b̅ ( X t ) d t, X 0 = x, where b̅is a smooth real function except at point 0 where b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2)d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...
We study a free energy computation procedure, introduced in
[Darve and Pohorille,
J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot,
J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time
behavior of a nonlinear stochastic
differential equation. This nonlinearity comes from a conditional
expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to
this equation has been proved
in [Lelièvre et al.,
Nonlinearity21 (2008) 1155–1181],...
Currently displaying 1 –
10 of
10