Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Numerical realization of the Bayesian inversion accelerated using surrogate models

Bérešová, Simona (2023)

Programs and Algorithms of Numerical Mathematics

The Bayesian inversion is a natural approach to the solution of inverse problems based on uncertain observed data. The result of such an inverse problem is the posterior distribution of unknown parameters. This paper deals with the numerical realization of the Bayesian inversion focusing on problems governed by computationally expensive forward models such as numerical solutions of partial differential equations. Samples from the posterior distribution are generated using the Markov chain Monte...

Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE

E. Grenier, V. Louvet, P. Vigneaux (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Parameter estimation in non linear mixed effects models requires a large number of evaluations of the model to study. For ordinary differential equations, the overall computation time remains reasonable. However when the model itself is complex (for instance when it is a set of partial differential equations) it may be time consuming to evaluate it for a single set of parameters. The procedures of population parametrization (for instance using SAEM algorithms) are then very long and in some cases...

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Quasi-Monte Carlo Methods for some Linear Algebra Problems. Convergence and Complexity

Karaivanova, Aneta (2010)

Serdica Journal of Computing

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods...

Reversible jump MCMC for two-state multivariate Poisson mixtures

Jani Lahtinen, Jouko Lampinen (2003)

Kybernetika

The problem of identifying the source from observations from a Poisson process can be encountered in fault diagnostics systems based on event counters. The identification of the inner state of the system must be made based on observations of counters which entail only information on the total sum of some events from a dual process which has made a transition from an intact to a broken state at some unknown time. Here we demonstrate the general identifiability of this problem in presence of multiple...

Simulation of transient performance measures for stiff markov chains

Abdelaziz Nasroallah (2010)

RAIRO - Operations Research

We consider the simulation of transient performance measures of high reliable fault-tolerant computer systems. The most widely used mathematical tools to model the behavior of these systems are Markov processes. Here, we deal basically with the simulation of the mean time to failure (MTTF) and the reliability, R(t), of the system at time t. Some variance reduction techniques are used to reduce the simulation time. We will combine two of these techniques: Importance Sampling and Conditioning...

Single-use reliability computation of a semi-Markovian system

Guglielmo D'Amico (2014)

Applications of Mathematics

Markov chain usage models were successfully used to model systems and software. The most prominent approaches are the so-called failure state models Whittaker and Thomason (1994) and the arc-based Bayesian models Sayre and Poore (2000). In this paper we propose arc-based semi-Markov usage models to test systems. We extend previous studies that rely on the Markov chain assumption to the more general semi-Markovian setting. Among the obtained results we give a closed form representation of the first...

The Tree-Grid Method with Control-Independent Stencil

Kossaczký, Igor, Ehrhardt, Mattias, Günther, Michael (2017)

Proceedings of Equadiff 14

The Tree-Grid method is a novel explicit convergent scheme for solving stochastic control problems or Hamilton-Jacobi-Bellman equations with one space dimension. One of the characteristics of the scheme is that the stencil size is dependent on space, control and possibly also on time. Because of the dependence on the control variable, it is not trivial to solve the optimization problem inside the method. Recently, this optimization part was solved by brute-force testing of all permitted controls....

Theoretical and numerical comparison of some sampling methods for molecular dynamics

Eric Cancès, Frédéric Legoll, Gabriel Stoltz (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of the present article is to compare different phase-space sampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling), stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purely deterministic methods (Nosé-Hoover chains, Nosé-Poincaré and Recursive Multiple Thermostats (RMT) methods). After recalling some theoretical convergence properties for the...

Towards effective dynamics in complex systems by Markov kernel approximation

Christof Schütte, Tobias Jahnke (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Many complex systems occurring in various application share the property that the underlying Markov process remains in certain regions of the state space for long times, and that transitions between such metastable sets occur only rarely. Often the dynamics within each metastable set is of minor importance, but the transitions between these sets are crucial for the behavior and the understanding of the system. Since simulations of the original process are usually prohibitively expensive, the effective...

Currently displaying 21 – 40 of 40

Previous Page 2