Tikhonov regularization with nonnegativity constraint.
Efficient iterative solution of large linear systems on grid computers is a complex problem. The induced heterogeneity and volatile nature of the aggregated computational resources present numerous algorithmic challenges. This paper describes a case study regarding iterative solution of large sparse linear systems on grid computers within the software constraints of the grid middleware GridSolve and within the algorithmic constraints of preconditioned Conjugate Gradient (CG) type methods. We identify...
Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the elasticity theory equations.
Limits of the extrapolation coefficients are rational functions of several poles with the largest moduli of the resolvent operator and therefore good estimates of these poles could be calculated from these coefficients. The calculation is very easy for the case of two coefficients and its practical effect in finite dimensional space is considerable. The results are used for acceleration of S.O.R. method.