Displaying 201 – 220 of 322

Showing per page

Quasi-Monte Carlo Methods for some Linear Algebra Problems. Convergence and Complexity

Karaivanova, Aneta (2010)

Serdica Journal of Computing

We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods...

Rational Krylov for nonlinear eigenproblems, an iterative projection method

Elias Jarlebring, Heinrich Voss (2005)

Applications of Mathematics

In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably...

Currently displaying 201 – 220 of 322