Displaying 261 – 280 of 1330

Showing per page

An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems

Xiao-Chuan Cai, Leszek Marcinkowski, Vassilevski, Panayot S. (2005)

Applications of Mathematics

This paper extends previous results on nonlinear Schwarz preconditioning (Cai and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The nonlocal finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in Jones...

An Extension of 3D Zernike Moments for Shape Description and Retrieval of Maps Defined in Rectangular Solids

Atilla Sit, Julie C Mitchell, George N Phillips, Stephen J Wright (2013)

Molecular Based Mathematical Biology

Zernike polynomials have been widely used in the description and shape retrieval of 3D objects. These orthonormal polynomials allow for efficient description and reconstruction of objects that can be scaled to fit within the unit ball. However, maps defined within box-shaped regions ¶ for example, rectangular prisms or cubes ¶ are not well suited to representation by Zernike polynomials, because these functions are not orthogonal over such regions. In particular, the representations require many...

An imperfect conjugate gradient algorithm

Fridrich Sloboda (1982)

Aplikace matematiky

A new biorthogonalization algorithm is defined which does not depend on the step-size used. The algorithm is suggested so as to minimize the total error after n steps if imperfect steps are used. The majority of conjugate gradient algorithms are sensitive to the exactness of the line searches and this phenomenon may destroy the global efficiency of these algorithms.

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan (2010)

Programs and Algorithms of Numerical Mathematics

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.

An intoduction to formal orthogonality and some of its applications.

Claude Brezinski (2002)

RACSAM

This paper is an introduction to formal orthogonal polynomials and their application to Padé approximation, Krylov subspace methods for the solution of systems of linear equations, and convergence acceleration methods. Some more general formal orthogonal polynomials, and the concept of biorthogonality and its applications are also discussed.

An introduction to hierarchical matrices

Wolfgang Hackbusch, Lars Grasedyck, Steffen Börm (2002)

Mathematica Bohemica

We give a short introduction to a method for the data-sparse approximation of matrices resulting from the discretisation of non-local operators occurring in boundary integral methods or as the inverses of partial differential operators. The result of the approximation will be the so-called hierarchical matrices (or short -matrices). These matrices form a subset of the set of all matrices and have a data-sparse representation. The essential operations for these matrices (matrix-vector and matrix-matrix...

An iterative algorithm for testing solvability of max-min interval systems

Helena Myšková (2012)

Kybernetika

This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = min { a , b } . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ A ̲ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...

An Iterative Method for the Matrix Principal n-th Root

Lakić, Slobodan (1995)

Serdica Mathematical Journal

In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.

An iterative method of alternating type for systems with special block matrices

Milan Práger (1991)

Applications of Mathematics

An iterative procedure for systems with matrices originalting from the domain decomposition technique is proposed. The procedure introduces one iteration parameter. The convergence and optimization of the method with respect to the parameter is investigated. The method is intended not as a preconditioner for the CG method but for the independent use.

Currently displaying 261 – 280 of 1330