Displaying 641 – 660 of 1330

Showing per page

Low rank Tucker-type tensor approximation to classical potentials

B. Khoromskij, V. Khoromskaia (2007)

Open Mathematics

This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...

Mapping directed networks.

Crofts, Jonathan J., Estrada, Ernesto, Higham, Desmond J., Taylor, Alan (2010)

ETNA. Electronic Transactions on Numerical Analysis [electronic only]

Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation

Jinn-Liang Liu (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock version...

Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part II: Mixed-hybrid finite element solution

Kamyar Malakpoor, Enrique F. Kaasschieter, Jacques M. Huyghe (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci.35 (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN41 (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic...

Matrix rank certification.

Saunders, B. David, Storjohann, Arne, Villard, Gilles (2004)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Maximal solutions of two–sided linear systems in max–min algebra

Pavel Krbálek, Alena Pozdílková (2010)

Kybernetika

Max-min algebra and its various aspects have been intensively studied by many authors [1, 4] because of its applicability to various areas, such as fuzzy system, knowledge management and others. Binary operations of addition and multiplication of real numbers used in classical linear algebra are replaced in max-min algebra by operations of maximum and minimum. We consider two-sided systems of max-min linear equations A x = B x , with given coefficient matrices A and B . We present a polynomial method for...

Currently displaying 641 – 660 of 1330