Solution of system of linear equations with large coefficients in the diagonal
Linear matrix approximation problems are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková,...
A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...
The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....