Some characterizations of totally nonpositive (totally negative) matrices.
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...
The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....
Let be a strongly elliptic operator on a -dimensional manifold (polyhedra or boundaries of polyhedra are also allowed). An operator equation with stochastic data is considered. The goal of the computation is the mean field and higher moments , , , of the solution. We discretize the mean field problem using a FEM with hierarchical basis and degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment for . The key tool...