Improving the convergence of iterative methods
The author considers the operator equation . Methods for acceleration of convergence of the iterative process are investigated.
The author considers the operator equation . Methods for acceleration of convergence of the iterative process are investigated.
The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...
We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second...
Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound of the spectrum of is an isolated point of ; (ii) (not necessarily an isolated point of with finite multiplicity) is an eigenvalue of .
In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.
MSC 2010: 26A33, 44A45, 44A40, 65J10We consider a linear system of differential equations with fractional derivatives, and its corresponding system in the field of Mikusiński operators, written in a matrix form, by using the connection between the fractional and the Mikusiński calculus. The exact and the approximate operational solution of the corresponding matrix equations, with operator entries are determined, and their characters are analyzed. By using the packages Scientific Work place and...