Original title unknown
In this paper we study the -version of the Partition of Unity Method for the Helmholtz equation. The method is obtained by employing the standard bilinear finite element basis on a mesh of quadrilaterals discretizing the domain as the Partition of Unity used to paste together local bases of special wave-functions employed at the mesh vertices. The main topic of the paper is the comparison of the performance of the method for two choices of local basis functions, namely a) plane-waves, and b) wave-bands....
We briefly present the difficulties arising when dealing with the controllability of the discrete wave equation, which are, roughly speaking, created by high-frequency spurious waves which do not travel. It is by now well-understood that such spurious waves can be dealt with by applying some convenient filtering technique. However, the scale of frequency in which we can guarantee that none of these non-traveling waves appears is still unknown in general. Though, using Hautus tests, which read the...
Kellogg's iterations in the eigenvalue problem are discussed with respect to the boundary spectrum of a linear normal operator.
Nell’articolo si dimostrano alcuni teoremi sulla stabilità dei processi numerici di Ritz e della collocazione in rapporto agli errori di «distorsione».
The iteration subspace method for approximating a few points of the spectrum of a positive linear bounded operator is studied. The behaviour of eigenvalues and eigenvectors of the operators arising by this method and their dependence on the initial subspace are described. An application of the Schmidt orthogonalization process for approximate computation of eigenelements of operators is also considered.