Obere Schranken für Eigenwerte von Eigenwertaufgaben der Form (...2 I Â?...A Â? B) x = 0 . - Upper Bounds for Eigenvalues of Quadratic Eigenvalue Problem.
We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.
We re-examine a quadratically convergent method using divided differences of order one in order to approximate a locally unique solution of an equation in a Banach space setting [4, 5, 7]. Recently in [4, 5, 7], using Lipschitz conditions, and a Newton-Kantorovich type approach, we provided a local as well as a semilocal convergence analysis for this method which compares favorably to other methods using two function evaluations such as the Steffensen’s method [1, 3, 13]. Here, we provide an analysis...
We consider partial Browder-Tikhonov regularization techniques for variational inequality problems with P_0 cost mappings and box-constrained feasible sets. We present classes of economic equilibrium problems which satisfy such assumptions and propose a regularization method for these problems.
In the paper by Hilout and Piétrus (2006) a semilocal convergence analysis was given for the secant-like method to solve generalized equations using Hölder-type conditions introduced by the first author (for nonlinear equations). Here, we show that this convergence analysis can be refined under weaker hypothesis, and less computational cost. Moreover finer error estimates on the distances involved and a larger radius of convergence are obtained.
Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound of the spectrum of is an isolated point of ; (ii) (not necessarily an isolated point of with finite multiplicity) is an eigenvalue of .