Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Convergence domains under Zabrejko-Zinčenko conditions using recurrent functions

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

We provide a semilocal convergence analysis for Newton-type methods using our idea of recurrent functions in a Banach space setting. We use Zabrejko-Zinčenko conditions. In particular, we show that the convergence domains given before can be extended under the same computational cost. Numerical examples are also provided to show that we can solve equations in cases not covered before.

Convergence of approximation methods for eigenvalue problem for two forms

Teresa Regińska (1984)

Aplikace matematiky

The paper concerns an approximation of an eigenvalue problem for two forms on a Hilbert space X . We investigate some approximation methods generated by sequences of forms a n and b n defined on a dense subspace of X . The proof of convergence of the methods is based on the theory of the external approximation of eigenvalue problems. The general results are applied to Aronszajn’s method.

Convergence of discretization procedures for problems whose entropy solutions are uniquely characterized by additional relations

Rainer Ansorge (2003)

Applications of Mathematics

Weak solutions of given problems are sometimes not necessarily unique. Relevant solutions are then picked out of the set of weak solutions by so-called entropy conditions. Connections between the original and the numerical entropy condition were often discussed in the particular case of scalar conservation laws, and also a general theory was presented in the literature for general scalar problems. The entropy conditions were realized by certain inequalities not generalizable to systems of equations...

Convergence of extrapolation coefficients

Jan Zítko (1984)

Aplikace matematiky

Let x k + 1 = T x k + b be an iterative process for solving the operator equation x = T x + b in Hilbert space X . Let the sequence { x k } k = o formed by the above described iterative process be convergent for some initial approximation x o with a limit x * = T x * + b . For given l > 1 , m 0 , m 1 , , m l let us define a new sequence { y k } k = m 1 by the formula y k = α 0 ( k ) x k + α 1 ( k ) x k - m 1 + ... + α l ( k ) x k - m l , where α i ( k ) are obtained by solving a minimization problem for a given functional. In this paper convergence properties of α i ( k ) are investigated and on the basis of the results thus obtainded it is proved that lim k x * - y k / x * - x k p = 0 for some p 1 .

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L 2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...

Currently displaying 21 – 38 of 38

Previous Page 2