Displaying 461 – 480 of 644

Showing per page

Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems

János Karátson, Sergey Korotov (2009)

Applications of Mathematics

The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...

Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods

Dieter Schott (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim is to reconstruct a signal function x ∈ L₂ if the phase of the Fourier transform [x̂] and some additional a-priori information of convex type are known. The problem can be described as a convex feasibility problem. We solve this problem by different Fejér monotone iterative methods comparing the results and discussing the choice of relaxation parameters. Since the a-priori information is partly related to the spectral space the Fourier transform and its inverse have to be applied in each...

Skipping transition conditions in a posteriori error estimates for finite element discretizations of parabolic equations

Stefano Berrone (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we derive a posteriori error estimates for the heat equation. The time discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The technique applied for deriving this upper bound is independent of the problem and can be generalized to other time...

Solvability of the power flow problem in DC overhead wire circuit modeling

Jakub Ševčík, Lukáš Adam, Jan Přikryl, Václav Šmídl (2021)

Applications of Mathematics

Proper traffic simulation of electric vehicles, which draw energy from overhead wires, requires adequate modeling of traction infrastructure. Such vehicles include trains, trams or trolleybuses. Since the requested power demands depend on a traffic situation, the overhead wire DC electrical circuit is associated with a non-linear power flow problem. Although the Newton-Raphson method is well-known and widely accepted for seeking its solution, the existence of such a solution is not guaranteed. Particularly...

Some theorems on the stability of numerical processes

Solomon G. Mikhlin (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Nell’articolo si dimostrano alcuni teoremi sulla stabilità dei processi numerici di Ritz e della collocazione in rapporto agli errori di «distorsione».

Currently displaying 461 – 480 of 644